Programme de colle n°8

semaine du 17 au 21 novembre

Notions vues en cours

Chapitre 11 : Équations différentielles (en complément de la semaine précédente)

- ED linéaire du second ordre ay'' + by' + cy = d(t) avec $a, b, c \in \mathbb{K}$ et $d: I \to \mathbb{K}$ continue
 - 0) Donnée de l'intervalle d'étude I

forme $d(t) = e^{qt}$ avec $q \in \mathbb{K}$)

- 1) Solution générale de l'équation homogène (avec $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C})$
- 3) Solution générale de l'ED avec second membre
- Problème de Cauchy (ordre 2), théorème de Cauchy-Lipschitz (ordre 2)
- Principe de superposition pour traiter des seconds membres plus variés
- Vu en cours : raccord d'ED du premier ordre, les exercices de raccord devront être légèrement guidés...

2) Solution particulière (pour d polynômial ou de la 4) Vérification éventuelle des conditions initiales

Chapitre 12 : Nombres réels

- Majorant, minorant, maximum (ou plus grand élément), minimum (ou plus petit élément) d'une partie de \mathbb{R} . Partie majorée, minorée, bornée
- Borne inférieure et borne supérieure : définition, caractérisation avec des ε , caractérisation avec une suite, l'ensemble $\mathbb R$ vérifie la propriété de la borne supérieure
- Si A admet un maximum, alors elle admet une borne supérieure et inf $A = \max A$
- Si A est de la forme $\{f(x) \mid x \in D\}$, on peut dresser le tableau de variations de la fonction f sur D pour en déduire A
- Notations $\sup_{x \in [a,b]} f(x)$, idem pour max, inf, min
- Approximation décimale d'un réel : valeur approchée (par défaut, par excès) d'un réel à 10^{-n} près
- Partie dense dans \mathbb{R} . Caractérisation avec des suites. Les ensembles \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} . Tout intervalle [a,b] avec a < b contient une infinité d'éléments de \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$
- Compléments : droite numérique achevée $\overline{\mathbb{R}}$, définition d'un intervalle de \mathbb{R} (partie de \mathbb{R} "sans trou")

Les exercices ne pourront pas porter sur la densité cette semaine.

ERRATUM: les exercices sur la densité peuvent être posés, mais pas les exercices "théoriques" sur les bornes supérieures et inférieures, comme les exercices 3, 4 et 5 du TD 12.

Les ED du premier ordre pourront aussi faire l'objet d'exercices.

Les questions de cours sont en page suivante

Questions de cours

Question Flash. Une question de cours sans démonstration choisie par l'examinateur, sur laquelle on doit passer un temps minimal. Cette question est choisie parmi celles ci-dessous, après les questions longues (chapitres 9, 10, 12).

Question Longue.

Cette semaine, AUCUNE démonstration n'est exigible.

- 1. Énoncé uniquement : définition d'un majorant, du maximum et de la borne supérieure d'une partie $A \subset \mathbb{R}$; propriété de la borne supérieure (sans démonstration) ; donner les deux caractérisations de la borne supérieure (sans démonstration) Chapitre 12, réparti dans les encadrés 12.1 à 12.8 sauf 12.3 et 12.5
- 2. Idem que le point précédent avec minorant, minimum, borne inférieure, etc.
- 3. Rappeler (éventuellement oralement) la définition d'une partie dense (sans démonstration), et montrer que les ensembles \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} . Chapitre 12, Théorèmes 12.13 et 12.14

Questions Flash au programme:

Chapitre 12:

- Soit $A \subset \mathbb{R}$ et $M \in \mathbb{R}$. Que doit vérifier M pour être un majorant de A? pour être le maximum de A?
- Que veut-dire la phrase "R possède la propriété de la borne supérieure" ?
- Compléter la caractérisation de la borne inférieure "avec des ε " : $m = \inf A \iff \dots$
- Compléter la caractérisation de la borne supérieure avec des suites : $M = \sup A \iff \dots$
- Soit $f:[a,b]\to\mathbb{R}$. Donner la définition de l'écriture " $\sup_{x\in[a,b]}f(x)$ "
- Soit $D \subset \mathbb{R}$. Donner une définition de "D est dense dans \mathbb{R} " (deux assertions possibles, une seule suffit).
- Soit $D \subset \mathbb{R}$. Donner une caractérisation de "D est dense dans \mathbb{R} " en termes de suites.

Chapitre 10:

- Donner une primitive de $\frac{u'}{u}$. En déduire une primitive de $\frac{1}{x} \times \frac{1}{\ln x}$.
- Donner une primitive de $u'u^{\alpha}$ avec $\alpha \neq -1$. En déduire une primitive de sh $x \times \frac{1}{\operatorname{ch}^n x}$.
- Donner une primitive de $u'u^{\alpha}$ avec $\alpha \neq -1$. En déduire une primitive de $\cos x \sqrt{\sin x}$.
- Donner une primitive de u'(ax+b) avec $a \neq 0$ et $b \in \mathbb{R}$. En déduire une primitive de $\tan(2x+3)$.
- Si F est une primitive d'une fonction f sur un intervalle I, quelles sont toutes les primitives de f sur I?
- Énoncer le théorème fondamental de l'analyse.
- Donner la définition d'une fonction de classe \mathscr{C}^1 .
- Soit $a \ge 0$. Que peut-on dire de $\int_{-a}^{a} f$ si f est impaire ? et si f est paire ?

Chapitre 9:

• Énoncer le théorème de la bijection monotone. On pourra en faire tout ou partie oralement...

- Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bijective. Quelles sont les hypothèses à vérifier pour affirmer que f^{-1} est dérivable en g? Que vaut alors $(f^{-1})'(g)$?
- Soit $x, y \in \mathbb{R}$. Exprimer x^y avec des fonctions usuelles. Pour quelles valeurs de x et de y est-ce que cela a un sens ?
- \bullet Énoncer les croissances comparées en $+\infty$
- Quels sont les ensembles de départ et d'arrivée de arcsin ? et de arccos ?
- Pour quelles valeurs de x a-t-on $\arcsin(\sin x) = x$? Et $\sin(\arcsin x) = x$?
- Pour quelles valeurs de x a-t-on $\arccos(\cos x) = x$? Et $\cos(\arccos x) = x$?
- Donner les dérivées de $\arccos x$ et de $\arctan x$.
- Quels sont les ensembles de départ et d'arrivée de arctan? et de th?
- \bullet Donner deux expressions de la dérivée de thx.